
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS               Vol. 8, No. 5-6, May - June 2014, p. 418 - 422 

 

Investigation of bistable switching in linear tapered 

nonlinear Bragg gratings 

 
JIAN-FENG TIAN

*
 

Department of Physics, Taiyuan Normal University, Taiyuan 030031, China 

 

 

 

Based on the coupled mode theory, by using the time-domain transfer matrix method, the bistable performance and dynamic 

switching characteristics of linear tapered nonlinear Bragg gratings (LT-NLBG) are analyzed numerically. We consider both 

the positive and negative tapered case and compare their performance as a nonlinear switch. The results show that, With the 

quasi-continuous wave taken into consideration, for the various tapered factors, the temporal characteristics exists with 

significant difference, including output self-pulsation amplitude, time delay and pulse-width, etc.; As a short pulse switching 

device, the positive tapered gratings display much less splitting, an indication that modulation instability is not playing a 

significant role, and the transmitted pulse is much more intense than that in the negative tapered case. 
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1. Introduction 

 

Compact all-optical switches and logic gates are of 

high interest in view of their applications in future packet 

switched networks. A leading candidate for such devices is 

the nonlinear Bragg grating which exhibits particular 

properties near the edge of “photonic band gap” (PBG). 

Outside PBG, slow Bragg soliton related to great 

anomalous group velocity dispersion (GVD) has been used 

for ultra-short optical pulse compression successfully [1-4]; 

Inside PBG, it shows bistable optical behavior with regard 

to the intensity of the input beam. The optical bistability 

has wide applications in optical signal processing, optical 

memory, optical limiting, optical switching and optical 

gate operations, etc [5-7]. Many efforts have been made to 

offer additional feasibility of NLBG, such as the 

switching-on threshold, the switching time, the on-off 

switching ratio and dynamic stability, etc. The used 

technologies mainly include spatial taper, phase shift, 

chirp and nonlinear refractive index axial varying, etc 

[8-12]. For the LT-NLBG gratings, earlier studies mostly 

were mainly carried out under the continuous wave (CW) 

hypothesis [8, 9], but it is essential to study its dynamic 

properties since the self-pulsing and chaos may happen in 

the upper branch of hysteresis due to modulation 

instability (MI) [13,14].   

In this paper, the bistable steady characteristics and 

dynamic switching characteristics of LT-NLBG have been 

analyzed based on the nonlinearly coupled mode equations 

(NLCME). The numerical simulations show that, 

depending upon the various tapered factors, the switching 

behavior is different both in stable and temporal 

characteristics. In the following we will discuss them 

separately, and the underlined mechanism is analyzed.  

 

 

2. Theoretical model 

 

Inside fiber gratings, the z -axial distribution of 

refractive index can be described by 

 

  2
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where ( )E z  is the inner electric field of gratings, 

)(zB  is the Bragg wave vector, )(z  is the 

spatial phase shift. 0n ， 1( )n z  and 2n  denote the 

effective mode refractive index, linear refractive 

index modulation amplitude, and nonlinear refractive 

index coefficient, respectively.  

The inner electric field can be expressed by 
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where   is the carrier angular frequency, t  is the 
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time, E  and E  represent the slowly varying 

amplitude of forward and backward wave, 

respectively. Substituting Eqs. (1) and (2) into the 

wave equations, and neglecting the loss and material 

dispersion(the nonlinear medium of NLBG is 

assumed to be Erbium-doped fiber without pump, 

even though its loss and material dispersion 

coefficients near 1.55 m  are large, the total loss 

and material dispersion are negligible due to very 

short length selected in calculations), the response 

time of material is very fast enough, as well as the 

carrier wavelength is close to Bragg wavelength, one 

can obtain the following nonlinear coupled mode 

equations [2] 
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where gv  is the light group velocity in the grating 

medium,  ,  and k  account for the detuning 

from the Bragg vector, nonlinear coefficient, and 

coupling coefficient, respectively, which can be 

expressed by 
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where c  is the light velocity in vacuum, 

 02nB  is the Bragg wavelength,   is the 

grating period， 

For linear tapered NLBG, k can be written as [8] 
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where L  is the total length of grating, 0k  is the 

coupling coefficient of the grating center, and 

k characterizes the variation slop of coupling coefficient, 

Its positive(negative) value corresponds to the 

positive(negative) tapered. 

The boundary conditions are given by 
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where
iE ,

rE and
tE are the slowly varying amplitudes of 

the incident, reflected and transmitted wave, respectively. 

Setting the spatial derivative with respect to t  in Eqs. 

(3a) and (3b) equal to zeros, the axial evolving equations 

of slowly varying amplitude under steady-state can be 

analyzed numerically by means of the fourth-order 

Runge-Kutta method together with boundary conditions. 

To simulate the output dynamics characteristics, the 

modified time-domain transfer-matrix method(TMM) can 

be utilized [14]. Split the length L into M equal sections 

from input end, assume each section is uniform, and label 

the localized amplitudes before and after each section as 

)( jj EE 
 and )( )1()1(  jj EE  (j=1,2,…..M), 

respectively, then 
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where the time step size t is related to spatial step 

size z as 
'/ gvzt  , the matrixes 

cT and pT respectively denote the coupling and detuning 

terms, given by 
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Start from the boundary condition (6b), calculating 

iteratively the Esq. (7a)-(7b), together with the boundary 

condition (6a), one can obtain the whole output wave of 

the nonuniform fiber grating. 

 

 

3. Results and discussion 

 

The used data in calculations 

are mB  55.1 , wmn /105.2 215

2

 , cmL 1 , 

1

0 5  cmk , 3L . To facilitate description, the input 

light powers iP , and the output powers tP are normalized 

as
ci PP / and

ct PP / respectively in following discussions, 

where LnAP effBc 23/4   is the critical input power, 

and
24.0 mAeff  is the effective area of waveguide [9]. 

 

a) Bistability performance analysis 

 

 

 

Fig. 1. Input-output characteristics curves for LT-NLBG. 

 

 

Fig. 1 shows the steady-state input-output 

characteristics curves for LT-NLBG, where %30k . 

From Fig. 1, it can be seen that, comparing positive 

tapered, negative tapered-NLBG increases the 

switching-on threshold, the width of the hysteresis and the 

on-off switching ratio significantly. The taper-dependent 

bistability is due to the difference of the axial distribution 

of forward wave intensity in the gratings [8]. 

 

b) Quasi-CW switching characteristics 

 

 

(a) (b) 

Fig. 2. Normalized input-output powers for LT-NLBG,  

k is (a) 30% and (b) -30%. 

   

To understand the instability of the upper state in Fig. 

1, we consider the continuous wave (CW) limit by using 

an input field whose intensity rises quickly (rise time 

~100ps) and then settles down a constant value. The dotted 

line in Fig. 2 shows the input power profile, and Fig. 2 

shows normalized output powers for LT-NLBG, where 

7.0/ ci PP , k is (a) 30% and (b) -30%. From Fig. 2 (a) 

and (b), one can see that, with the CW taken into 

consideration, the periodic self-pulsation may emerge 

extremely easy under the dynamic conditions in NLBG, 

and comparing negative tapered case, the positive tapered 

NLBG output self-pulsation wave has greater delay time, 

the output pulse width is narrower, and pulse sequence 

base is smaller, but the amplitude of self-pulsation 

increase. 

The oscillation of the output light can be interpreted 

as modulation instability, which is a result of an 

interplaying between the nonlinear and dispersive effects. 

The periodic structure provides a very large anomalous 

group velocity dispersion near the upper edge of the stop 

gap. When the incident power above the threshold, the 
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steady-state propagation of the CW is inherently unstable, 

new frequency wave will be generated, which can be 

explained in terms of four-wave mixing phase-matched.  

 

c) Short pulse switching characteristics 

  

  

a) 

    

  

b) 

Fig. 3. Input and output pulse shapes for LT-NLBG, the 

normalized input peak power is (a) 1.0 and (b) 1.2. 

Fig. 3 the input and output pulse shapes for LT-NLBG, 

where %30k , and the normalized input peak 

power
ci PP / is (a) 1.0 and (b) 1.2. The input peak power is 

selected above the threshold according to Fig. 1. The input 

pulse is assumed to be Gaussian shape with 200ps width. 

For positive tapered case, we observe much less splitting, 

an indication that modulation instability is not playing a 

significant role, and the transmitted pulse is much more 

intense than that in the negative tapered case. In fact, the 

narrowed transmitted pulse for positive-tapered NLBG is a 

Bragg soliton. From the physical point of view, the Bragg 

soliton comes from the balance of anomalous group 

velocity dispersion near PBG and self-phase modulation 

(SPM). For input pulse with larger peak power [see Fig. 

3(b)], the normalized peak power of transmitted Bragg 

soliton is further increased up to ~2.2 owing to the 

enhanced SPM. 

 

 

4. Conclusions 

 

In summary, we have investigated numerically the 

bistable performance and dynamic switching 

characteristics of linear tapered nonlinear Bragg gratings. 

We considered both the positive and negative taper case 

and compared their performance as a nonlinear switch. 

The nonlinear coupled-mode equations were solved 

numerically to obtain switching characteristics. The results 

show that, With the quasi-continuous wave taken into 

consideration, for the various tapered factors, the temporal 

characteristics exists with significant difference, including 

output self-pulsation amplitude, time delay and 

pulse-width, etc., the modulation instability is responsible 

for the instability; As a short pulse switching device, the 

positive tapered gratings display much less splitting, an 

indication that modulation instability is not playing a 

significant role, and the transmitted pulse is much more 

intense than that in the negative tapered case; For the 

negative tapered gratings, the shape of the transmitted 

pulses can change dramatically from that of the input pulse, 

especially when pulse peak power is large. Despite this 

paper deals only with switching characteristics analysis for 

NLBG with cosine refractive index modulation, further 

study shows that, for arbitrary nonlinear periodic 

structures, the influence of the linear tapered on its 

dynamic performance exhibits similar behaviors. 
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